IRG 1 - Designing Functionality into Layered Ferroics

IRG1 combines expertise in materials theory and simulation, materials synthesis, and physical property characterization to predict, discover, and characterize new ferroics with unprecedented properties based on layered oxides.

Leader:  Venkatraman Gopalan


IRG1, Designing Functionality into Layered Ferroics has, at its core, a Materials-by-Design challenge to design and discover multifunctional complex oxides starting from the level of atoms. The goal is to exploit the rich design space offered by layered oxides to poise them with competing coexistence of diverse polar, electronic, magnetic, and optical phenomena.  An unprecedented expansion of ferroic families in layered oxides – a vast and largely unexplored materials class with unique control knobs in cationic chemistry, connectivity, and geometry – will enable us to counterpoise competing phases with colossal properties to transform otherwise nonpolar materials into strongly polar ones and will couple polar order parameter with metallicity, magnetism, correlated electronic phenomena, and optical transparency.  Group theory, materials informatics, first-principles DFT, model Hamiltonians, and phase-field modeling will predict new ferroic systems and guide experimental efforts. Potential new technologies include high temperature piezoelectrics, high frequency tunable dielectrics for 5G networks, photovoltaics, and electric field control of metal-insulator transitions and magnetism.

Recent Accomplishments:

  • Designed and Discovered many new families of noncentrosymmetric layered oxides. (Mayer, Adv. Functional Materials (2014), SenGupta, Adv. Electronic Material (2016), Benedek, Rondinelli, Dalton Transactions (2015), Young, Dalton Transactions (2015)), Li, Adv. Materials (2015)).
  • Discovery of a new antisymmetry of motion and distortion of materials, (Vanleeuwen (2015)).
  • Introduced a new paradigm for achieving optical transparency in correlated metals. (Zhang, Nature Materials, 2016).
  • Discovered new polar vortex states in oxide superlattices (Yadav, Nature, 2016).
  • Discovery of a low symmetry metastable phase with large property enhancements in classic ferroelectric crystals, BaTiO3 and KNbO3. (Lummen, Nature Commun., 2014).
  • Discovery of a new family of improper acentric layered oxides, NaRETiO4, though oxygen octahedral rotations (Akamatsu, Phys. Rev. Lett., 2014).
  • Prediction and discovery of a Ruddlesden-Popper layered ferroic with the highest figure of merit for dielectric tuning ever reported. (Lee, Nature, 2013).
  • Three multiferroic mechanisms were discovered by our prior IRG team (2008-2014): Spin-phonon coupling (Nature 466,  954 (2010)), Coupled JT and DM interactions (Phys. Rev. Lett. 100, 167203 (2008)), and Hybrid improper multiferroics (Phys. Rev. Lett. 106, 107204 (2011)).


L. Zhang, Y. Zhou, L. Guo, W. Zhao, A. Barnes, H.-T. Zhang, C. Eaton, Y. Zheng, M. Brahlek, H.F. Haneef, N.J. Podraza, M.H.W. Chan, V. Gopalan, K. Rabe, and R. Engel-Herbert, “Correlated metals as transparent conductors”, Nature Materials, 15, 204–210 (2016) DOI: 10.1038/NMAT4493

A. K. Yadav, C. T. Nelson, S. L. Hsu, Z. Hong, J. D. Clarkson, C. M. Schlepüetz, A. R. Damodaran, P. Shafer, E. Arenholz, L. R. Dedon, A. Vishwanath, A. M. Minor, L. Q. Chen, J. F. Scott, L. W. Martin, and R. Ramesh, “Observation of Polar Vortices in Oxide Superlattices,” Nature 530, 198–201 (2016)

M. E. Strayer, A. Sen Gupta, H. Akamatsu, S. Lei, N. A. Benedek, V. Gopalan, and T. E. Mallouk, "Emergent non-centrosymmetry and piezoelectricity driven by oxygen octahedral rotations in n = 2 Dion-Jacobson phase layer perovskites," Advanced Functional Materials, 26, 1930-1937, (2016) 10.1002/adfm.201504046

S.W. Kim, Z. Deng, M-R. Li, M. Croft, A. Sen Gupta, H. Akamatsu, V. Gopalan, M. Greenblatt, “PbMn(IV)TeO6: A new noncentrosymmetric layered honeycomb magnetic oxide,” Inorganic Chemistry, 55 (3), pp 1333–1338, (2016) DOI: 10.1021/acs.inorgchem.5b02677.

A. Sen Gupta, H. Akamatsu, M. E. Strayer, S. Lei, T. Kuge, K. Fujita, C. dela Cruz, A. Togo, I. Tanaka, K. Tanaka, T. E. Mallouk, and V. Gopalan, "Improper inversion symmetry breaking and piezoelectricity through oxygen octahedral rotations in layered perovskite family, LiRTiO4 (R= rare earths)," Advanced Electronic Materials, 2, 1500196 (2016) DOI: 10.1002/aelm.201500196

B. K. VanLeeuwen, V. Gopalan, “Antisymmetry of Distortions,” Nature Communications, 6, 8818 (2015) doi:10.1038/ncomms9818

Takeshi Yajima, Fumitaka Takeiri, Kohei Aidzu, Hirofumi Akamatsu, Koji Fujita, Masatoshi Ohkura, Wataru Yoshimune, Shiming Lei, Venkatraman Gopalan, Katsuhisa Tanaka, C. M. Brown, Mark A. Green, Takafumi Yamamoto, Yoji Kobayashi, and Hiroshi Kageyama, “A labile hydride strategy to synthesize heavily nitrided BaTiO3Nature Chemistry, 7, 1017-1023 (2015). doi:10.1038/nchem.2370 

D. Lee, H. Lu, Y. Gu, S. Y. Choi, S. D. Li, S. Ryu, T. R. Paudel, K. Song, E. Mikheev, S. Lee, S. Stemmer, D. A. Tenne, S. H. Oh, E. Y. Tsymbal, X. Wu, L. Q. Chen, A. Gruverman, and C. B. Eom, Emergence of Room-Temperature Ferroelectricity at Reduced Dimensions. Science, 349(6254), 1314-17. (2015)

“Anharmonic lattice interactions in improper ferroelectrics for multiferroic design,” J. Young, A. S. Skiadopoulou,, S. Picozzi, and J.M. Rondinelli, J. Phys.: Condens. Matter, 27, 283202 (2015).DOI: 10.1088/0953-8984/27/28/283202.

“Predicting and Designing Optical Properties of Inorganic Materials,” J.M. Rondinelli and E. Kioupakis, Ann. Rev. Mater. Res., 45, 491-518 (2015). DOI: 10.1146/annurev-matsci-070214-021150

“Understanding Ferroelectricity in Layered Perovskites: New Ideas and Insights from Theory and Experiments,” N.A. Benedek, J.M. Rondinelli, H. Djani, Ph. Ghosez, and P. Lightfoot, Dalton Transactions, 44, 10543-10558 (2015). DOI: 10.1039/C5DT00010F (Invited Perspective; Cover Feature)

“Tuning the Ferroelectric Polarization in AA'MnWO6 double perovskites through A cation Substitution,” J. Young, A. Stroppa, S. Picozzi, and J.M. Rondinelli, Dalton Transactions, 44, 10644-10653 (2015). DOI: 10.1039/C4DT03521F.

M-R. Li, M. Croft, P. W. Stephens, M. Ye, D. Vanderbilt, M. Retuerto, Z. Deng, C. P. Grams, J. Hemberger, J. Hadermann, W-M. Li, C-Q. Jin, F. O. Saouma, J. I. Jang, H. Akamatsu, V. Gopalan, D. Walker, M. Greenblatt, “Mn2FeWO6: a new Ni3TeO6-type polar and magnetic oxide,” Advanced Materials, 27, 2177 (2015). doi: 10.1002/adma.201405244

J. J. Wang, J. M. Hu, R. C. Peng, Y. Gao, Y. Shen, L. Q. Chen, and C. W. Nan, Magnetization Reversal by out-of-Plane Voltage in BiFeO3-Based Multiferroic Heterostructures. Scientific Reports, 5, 10459 (2015)

L. Hong, P. P. Wu, Y. L. Li, V. Gopalan, C. B. Eom, D. G. Schlom, and L. Q. Chen, Piezoelectric Enhancement of (PbTiO3)m/(BaTiO3)n Ferroelectric Superlattices through Domain Engineering. Physical Review B, 2014. 90(17)174111.

T.A. Lummen, Yijia Gu, Jianjun Wang, Shiming Lei, Amit Kumar, Andrew T. Barnes, Eftihia Barnes, Sava Denev, Alex Belianinov, Martin Holt, Anna N. Morozovska, Sergei V. Kalinin, Long-Qing Chen and Venkatraman Gopalan, “Thermotropic phase boundaries in classic ferroelectrics,” Nat. Commun. 5, 3172 (2014).

H. Akamatsu, K. Fujita, T. Kuge, A. S. Gupta, A. Togo, S. Lei, F. Xue, G. Stone, J. M. Rondinelli, L. Q. Chen, I. Tanaka, V. Gopalan, K. Tanaka, “Inversion symmetry breaking by oxygen octahedral rotations in Ruddlesden-Popper NaRETiO4 family” Phys. Rev. Lett. 112, 187602 (2014).

C-H.Lee, N. D. Orloff, T. Birol, Y. Zhu, V. Goian, R. Haislmaier, E. Vlahos, J. A. Mundy, Y. Nie, M. D. Biegalski, J. Zhang, M. Bernhagen, N. A. Benedek, Y. Kim, J. D. Brock, R. Uecker, X. Xi, V. Gopalan, D. Nuzhnyy, S. Kamba, D. A. Muller, I. Takeuchi, J. C. Booth, C. J. Fennie & D. G. Schlom, “Exploiting Dimensionality and Defect Mitigation to Create Tunable Microwave Dielectrics,” Nature, doi:10.1038/nature12582 (published on-line on October 16, 2013) (2013).