IRG 3 - High-Pressure Enabled Electronic Metalattices

Metalattices fill a gap in length scales between atomic and photonics crystals. At length scales of tens of nanometers, old materials in new periodic forms are expected to exhibit different properties as the sizes of their meta-atoms and meta-bonds become

Leader:  John Badding

Description

IRG3 exploits unique synthetic capabilities in high-pressure infiltration of semiconductors into diverse 3D nanotemplates to create new materials in which electronic, magnetic, and vibrational degrees of freedom interact with well-ordered nanometer-scale 3D structural modulations. Ordered, electrically continuous 3D structural modulations of extreme strain, quantum confinement, and interfacial physics will define a new physical regime for electronic, optical, magnetic, and thermal response, one that exploits diffraction effects to control thermal and electrical transport. The greatly altered palette of physical properties thereby made available in well-developed semiconductor platforms such as Si could enable practical application in diverse areas such as solar cells, near-IR photonics, light emitting devices, and improved thermoelectrics.

Publications

24.        Bevis, C.; Karl, R., Jr.; Reichanadter, J.; Gardner, D. F.; Porter, C.; Shanblatt, E.; Tanksalvala, M.; Mancini, G. F.; Kapteyn, H.; Murnane, M.; Adams, D. Multiple Beam Ptychography for Large Field-of-View, High Throughput, Quantitative Phase Contrast Imaging. Ultramicroscopy 2018, 184, 164–171. DOI: 10.1016/j.ultramic.2017.08.018

23.         Motevalian, S. P.; Aro, S. C.; Cheng, H. Y.; Day, T. D.; van Duin, A. C. T.; Badding, J. V.; Borhan, A. Kinetics of Silane Decomposition in High-Pressure Confined Chemical Vapor Deposition of Hydrogenated Amorphous Silicon. Ind. Eng. Chem. Res. 2017, 56 (51), 14995–15000. DOI: 10.1021/acs.iecr.7b03515

22.         Liu, Y.; Kempinger, S.; He, R.; Day, T. D.; Moradifar, P.; Yu, S.-Y.; Russell, J. L.; Torres, V. M.; Xu, P.; Mallouk, T. E.; Mohney, S. E.; Alem, N.; Samarth, N.; Badding, J. V. Confined Chemical Fluid Deposition of Ferromagnetic Metalattices. Nano Lett. 2017, 18 (1), 546–552. DOI: 10.1021/acs.nanolett.7b04633

21.         Russell, J. L.; Mallouk, T. E. Double Replication of Silica Colloidal Crystal Films. ACS Appl. Mater. Interfaces 2017, 9 (48), 42075–42083. DOI: 10.1021/acsami.7b12662

20.        Russell, J. L.; Noel, G. H.; Warren, J. M.; Tran, N.-L. L.; Mallouk, T. E. Binary Colloidal Crystal Films Grown by Vertical Evaporation of Silica Nanoparticle Suspensions. Langmuir 2017, 33 (39), 10366–10373. DOI: 10.1021/acs.langmuir.7b02553

19.         Ji, X.; Poilvert, N.; Liu, W.; Xiong, Y.; Cheng, H. Y.; Badding, J. V.; Dabo, I.; Gopalan, V. A Silicon Microwire Under a Three-Dimensional Anisotropic Tensile Stress. Appl. Phys. Lett. 2017, 110 (9), 091911. DOI: 10.1063/1.4977852

18.         Ji, X.; Lei, S.; Yu, S.-Y.; Cheng, H. Y.; Liu, W.; Poilvert, N.; Xiong, Y.; Dabo, I.; Mohney, S. E.; Badding, J. V.; Gopalan, V. Single-Crystal Silicon Optical Fiber by Direct Laser Crystallization. ACS Photonics 2017, 4 (1), 85–92. DOI: 10.1021/acsphotonics.6b00584

17.         Ji, X.; Page, R. L.; Chaudhuri, S.; Liu, W.; Yu, S.-Y.; Mohney, S. E.; Badding, J. V.; Gopalan, V. Single‐Crystal Germanium Core Optoelectronic Fibers. Advanced Optical Materials 2017, 5 (1), 1600592. DOI: 10.1002/adom.201600592

16.         Motevalian, S. P.; Borhan, A.; Zhou, H.; Zydney, A. Twisted Hollow Fiber Membranes for Enhanced Mass Transfer. J. Membr. Sci. 2016, 514, 586–594. DOI: 10.1016/j.memsci.2016.05.027

15.         Shanblatt, E. R.; Porter, C. L.; Gardner, D. F.; Mancini, G. F.; Karl, R. M., Jr.; Tanksalvala, M. D.; Bevis, C. S.; Vartanian, V. H.; Kapteyn, H. C.; Adams, D. E.; Murnane, M. Quantitative Chemically Specific Coherent Diffractive Imaging of Reactions at Buried Interfaces with Few Nanometer Precision. Nano Lett. 2016, 16 (9), 5444–5450. DOI: 10.1021/acs.nanolett.6b01864

14.         He, R.; Day, T. D.; Sparks, J. R.; Sullivan, N. F.; Badding, J. V. High Pressure Chemical Vapor Deposition of Hydrogenated Amorphous Silicon Films and Solar Cells. Adv. Mater. 2016, 28 (28), 5939–5942. DOI: 10.1002/adma.201600415

13.         Mahan, G. D.; Poilvert, N.; Crespi, V. H. Thermoelectric Properties of Inverse Opals. J. Appl. Phys. 2016, 119 (7), 075101–075107. DOI: 10.1063/1.4941784

12.         Chaudhuri, S.; Sparks, J. R.; Ji, X.; Krishnamurthi, M.; Shen, L.; Healy, N.; Peacock, A. C.; Gopalan, V.; Badding, J. V. Crystalline Silicon Optical Fibers with Low Optical Loss. ACS Photonics 2016, 3 (3), 378–384. DOI: 10.1021/acsphotonics.5b00434

11.         Vukovic, N.; Healy, N.; Sparks, J. R.; Badding, J. V.; Horak, P.; Peacock, A. C. Tunable Continuous Wave Emission via Phase-Matched Second Harmonic Generation in a ZnSe Microcylindrical Resonator. Sci. Rep. 2015, 1–9. DOI: 10.1038/srep11798

10.         Hutasoit, J. A. Universality Lost: Relation Between Quantizations of the Hall Conductance and the Edge Exponents in Fractional Quantum Hall Effect. Phys. Rev. B 2015, 91 (8), 081113–081114. DOI: 10.1103/PhysRevB.91.081113

9.          Karl, R.; Bevis, C.; Lopez-Rios, R.; Reichanadter, J.; Gardner, D.; Porter, C.; Shanblatt, E.; Tanksalvala, M.; Mancini, G. F.; Murnane, M.; Kapteyn, H.; Adams, D. Spatial, Spectral, and Polarization Multiplexed Ptychography. Opt. Express 2015, 23 (23), 30250–30259. DOI: 10.1364/OE.23.030250

8.          Tao, G.; Ebendorff-Heidepriem, H.; Stolyarov, A. M.; Danto, S.; Badding, J. V.; Fink, Y.; Ballato, J.; Abouraddy, A. F. Infrared Fibers. Adv. Opt. Photon. 2015, 7 (2), 379–380. DOI: 10.1364/AOP.7.000379

7.           Zhao, W.; Bischof, J. L.; Hutasoit, J.; Liu, X.; Fitzgibbons, T. C.; Hayes, J. R.; Sazio, P. J. A.; Liu, C.; Jain, J. K.; Badding, J. V.; Chan, M. H. W. Single-Fluxon Controlled Resistance Switching in Centimeter-Long Superconducting Gallium–Indium Eutectic Nanowires. Nano Lett. 2014, 15 (1), 153–158. DOI: 10.1021/nl503283e

6.          Hutasoit, J. A.; Zang, J.; Roiban, R.; Liu, C.-X. Weyl Fermions Induced Magnon Electrodynamics in a Weyl Semimetal. Phys. Rev. B 2014, 90 (13), 134409–7. DOI: 10.1103/PhysRevB.90.134409

5.          Healy, N.; Mailis, S.; Bulgakova, N. M.; Sazio, P. J. A.; Day, T. D.; Sparks, J. R.; Cheng, H. Y.; Badding, J. V.; Peacock, A. C. Extreme Electronic Bandgap Modification in Laser-Crystallized Silicon Optical Fibres. Nature Materials 2014, 13 (12), 1122–1127. DOI: 10.1038/nmat4098

4.          Mahan, G. D. Donor States in Inverse Opals. J. Appl. Phys. 2014, 116 (11), 114307. DOI: 10.1063/1.4895839

3.           Balram, A. C.; Hutasoit, J. A.; Jain, J. K. Collective Excitations of a System of Coupled Relativistic and Nonrelativistic Two-Dimensional Electron Gases. Phys. Rev. B 2014, 90 (4), 045103–045107. DOI: 10.1103/PhysRevB.90.045103

2.           Shen, L.; Healy, N.; Xu, L.; Cheng, H. Y.; Day, T. D.; Price, J. H. V.; Badding, J. V.; Peacock, A. C. Four-Wave Mixing and Octave-Spanning Supercontinuum Generation in a Small Core Hydrogenated Amorphous Silicon Fiber Pumped in the Mid-Infrared. Opt. Lett. 2014, 39 (19), 5721–5724. DOI: 10.1364/OL.39.005721

1.           Ji, X.; Zhang, B.; Krishnamurthi, M.; Badding, J.; Gopalan, V. Mid-Infrared Spectroscopic Imaging Enabled by an Array of Ge-Filled Waveguides in a Microstructured Optical Fiber Probe. Opt. Express 2014, 22 (23), 28459–28466. DOI: 10.1364/OE.22.028459