IRG 4 - Multicomponent Assemblies for Collective Function

IRG4 Overview: Advances in materials synthesis and assembly, inspired by collective function goals, will enable new classes of reconfigurable photonic materials in which the optical response varies in response to particle reorganization.

Leader:  Christine Keating

Description

 IRG4 seeks to understand and control the organization of particles and particle mixtures to generate photonic architectures in which non-additive functions are imparted by the collective properties of the array. Assemblies will incorporate multiple, distinct particle populations that vary in composition and consequently in their response to various directed self-assembly approaches. Learning how to achieve desired assembly outcomes despite these differences, and to find ways to take advantage of them for increased control, will set the stage for a new era of nanomaterial-enabled device applications well beyond those proposed here. Several classes of multicomponent assemblies are under investigation, incorporating new types of functional particles and spanning a wide range of organizational ordering schemes. These span a range of organizational complexity from well-ordered arrays that will collectively define the spatial refractive index profile to manipulate light in new ways to disordered assemblies of scattering particles to advance understanding of ‘random’ photonics, with a focus on lasing and nonlinear wave mixing. We are also actively exploring new photonic designs inspired by fundamental physics, such as parity-time symmetry concepts and topologically protected photonic states as new ways to protect against performance degradation by defects introduced by assembly.  

Recent Accomplishments:

  • Demonstrated the tuning of a random laser by controling the disorder of assembled nanowires through reconfiguration in an electric field, through collaboration between Christodoulides, Keating, and Liu.62
  • Observed one-dimensional topological lasing in a Su-Schrieffer-Heeger ring resonator chain, as a result of collaboration between Rechtsman and Christodoulides.59
  • Predicted and observed a topological laser, a complex semiconductor laser that achieves high robustness against disorder usin the same principles as for robust electron flow in toological insulators, via collaboration between Rechtsman and Christodoulides.57-58
  • Observed first the valley Hall effect in optics, a possible route to robust reconfigurable colloidal-based photonic structures.55
  • Numerically validated a metallic nanowire-enabled high-performace hybrid plasmonic waveguide showing a deep-subwavelength mode area and reasonable propagation distance.54
  • Developed a solution-phase synthesis method that epitaxially seeds the growth of VO2 off of single-crystal, faceted TiO2 nanorods. The temperature of the insulator-to-metal transition of the nanocrystalline VO2 domains varies with particle size and the nature of the VO2-TiO2 interface.50
  • Demonstrated highly confined sub-wavelength dielectric waveguids with a low-visibility and broadband opitical activity through tailoring the unique anisotropy and exploiting the inter-cell coupling of metasurface coatings.46
  • Numerically investigated the coherent manipulation of optical chirality in the near-field of chiral metamaterials, which may improve the plasmonic nanostructure based enantiomeric sensing.42
  • Observed the first Weyl points for photons in the optical frequency regime.39
  • Demonstrated broadband infrared polarizers based on reconfigurable nanowire assemblies driven by electrical signals, through collaboration between Werner and Keating.36
  • Demonstrated a vanadium dioxide (VO2) integrated photonic metadevice exhibiting electrically switchable reflection, programmable memory effect, and active infrared camouflage, as a result of collaboration between Mayer and Werner.32
  • Realized the first all-dielectric lossless perfect magnetic mirror with a near-zero reflection phase at a wavlength of arround 1.0 µm, via collaboration between Liu, Werner, and Mayer.28
  • Demonstrated the successful engineering of the optical properties of a nanoring loaded nanoantenna system at a deep-subwavelength scale, through collaboration between Werner and Mayer.15,25
  • Demonstrated the cloaking phenomena of microwave radiators through dispersion engineeing of metasurface.21

Publications

63.         Shi, Yin; Chen, L. Q. Phase-field model of insulator-to-metal transition in VO2 under an electric field. (Submitted)

62.         Donahue, P. D.; Zhang, C.; Nye, N.S.; Miller, J. R.; Wang, C. -Y.; Tang, R.; Christodoulides, D. N.; Keating, C. D.; Liu, Z. Controlling Disorder by Electric Field Directed Reconfiguration of Nanowires to Tune Random Lasing. (Submitted)

61.        Chang, S.; Guo, X.; Ni, X. Optical Metasurfaces: Progress and Applications. Annu. Rev. Mater. Res. 2018, 48. DOI: 10.1146/annurev-matsci-070616-124220

60.        Noh, J.; Benalcazar, W. A.; Huang, S.; Collins, M. J.; Chen, K.; Hughes, T. L.; Rechtsman, M. C. Topological protection of photonic mid-gap cavity modes. arXiv preprint arXiv:1611.02373 (accepted for publication in Nature Photonics) 2018

59.        Parto, M.; Wittek, S.; Hodaei, H.; Harari, G.; Bandres, M. A.; Ren, J.; Rechtsman, M. C.; Segev, M.; Christodoulides, D. N.; Khajavikhan, M. Edge-Mode Lasing in 1D Topological Active Arrays. Phys. Rev. Lett. 2018, 120 (11), 113901. DOI: 10.1103/PhysRevLett.120.113901

58.        Bandres, M. A.; Wittek, S.; Harari, G.; Parto, M.; Ren, J.; Segev, M.; Christodoulides, D. N.; Khajavikhan, M. Topological Insulator Laser: Experiments. Science 2018, 359 (6381), eaar4005. DOI: 10.1126/science.aar4005

57.        Harari, G.; Bandres, M. A.; Lumer, Y.; Rechtsman, M. C.; Chong, Y. D.; Khajavikhan, M.; Christodoulides, D. N.; Segev, M. Topological Insulator Laser: Theory. Science 2018, 359 (6381), eaar4003. DOI: 10.1126/science.aar4003

56.        Shi, Y.; Xue, F.; Chen, L. Q. Ginzburg-Landau Theory of Metal-Insulator Transition in VO2: The Electronic Degrees of Freedom. EPL 2018, 120 (4), 46003. DOI: 10.1209/0295-5075/120/46003

55.        Noh, J.; Huang, S.; Chen, K. P.; Rechtsman, M. C. Observation of Photonic Topological Valley Hall Edge States. Phys. Rev. Lett. 2018, 120 (6), 063902. DOI: 10.1103/PhysRevLett.120.063902

54.        Werner, D. H.; Kang, L.; Werner, P. L.; Ren, Q.; Yue, T.; Bian, Y. Deep-Subwavelength Light Transmission in Hybrid Nanowire-Loaded Silicon Nano-Rib Waveguides. Photonics Res. 2018, 6 (1), 37–45. DOI: 10.1364/PRJ.6.000037

53.        Noh, J.; Rechtsman, M. C.; Huang, S.; Chen, K. P.; Leykam, D.; Chong, Y. D. Observation of Weyl Points in Optics. Opt. Photonics News 2017, 28 (Dec 2017), 53. Cross ref

52.        Nagar, J.; Lu, B. Q.; Pantoja, M. F.; Werner, D. H. Analytical Expressions for the Mutual Coupling of Loop Antennas Valid From the RF to Optical Regimes. IEEE Trans. Antennas Propagat. 2017, 65 (12), 6889–6903. DOI: 10.1109/TAP.2017.2754411

51.        Bian, Y.; Ren, Q.; Kang, L.; Qin, Y.; Werner, P. L.; Werner, D. H. Efficient Cross-Talk Reduction of Nanophotonic Circuits Enabled by Fabrication Friendly Periodic Silicon Strip Arrays. Sci. Rep. 2017, 7 (1), 4222. DOI: 10.1038/s41598-017-16096-9

50.        Li, X.; Schaak, R. E. Size- and Interface-Modulated Metal-Insulator Transition in Solution-Synthesized Nanoscale VO2-TiO2-VO2 Heterostructures. Angew. Chem. Int. Ed. 2017, 56 (49), 15550–15554. DOI: 10.1002/anie.201706599

49.        Ren, Q.; Bian, Y.; Kang, L.; Werner, P. L.; Werner, D. H. Leap-Frog Continuous–Discontinuous Galerkin Time Domain Method for Nanoarchitectures with the Drude Model. J. Lightwave Technol. 2017, 35 (22), 4888–4896. DOI: 10.1109/JLT.2017.2760913

48.        Boehm, S. J.; Lin, L.; Brljak, N.; Famularo, N. R.; Mayer, T. S.; Keating, C. D. Reconfigurable Positioning of Vertically-Oriented Nanowires Around Topographical Features in an AC Electric Field. Langmuir 2017, 33 (41), 10898–10906. DOI: 10.1021/acs.langmuir.7b02163

47.        Pyrialakos, G. G.; Nye, N. S.; Kantartzis, N. V.; Christodoulides, D. N. Emergence of Type-II Dirac Points in Graphynelike Photonic Lattices. Phys. Rev. Lett. 2017, 119 (11), 113901. DOI: 10.1103/PhysRevLett.119.113901

46.        Jiang, Z. H.; Kang, L.; Werner, D. H. Conformal Metasurface-Coated Dielectric Waveguides for Highly Confined Broadband Optical Activity with Simultaneous Low-Visibility and Reduced Crosstalk. Nat Comms 2017, 8 (1), 356. DOI: 10.1038/s41467-017-00391-0

45.        Hodaei, H.; Hassan, A. U.; Wittek, S.; Garcia-Gracia, H.; El-Ganainy, R.; Christodoulides, D. N.; Khajavikhan, M. Enhanced Sensitivity at Higher-Order Exceptional Points. Nature 2017, 548 (7666), 187–191. DOI: 10.1038/nature23280

44.        Lee, D.; Lee, J.; Song, K.; Xue, F.; Choi, S.-Y.; Ma, Y.; Podkaminer, J.; Liu, D.; Liu, S.-C.; Chung, B.; Fan, W.; Cho, S. J.; Zhou, W.; Lee, J.; Chen, L. Q.; Oh, S. H.; Ma, Z.; Eom, C.-B. Sharpened VO2 Phase Transition via Controlled Release of Epitaxial Strain. Nano Lett. 2017, 17 (9), 5614–5619. DOI: 10.1021/acs.nanolett.7b02482

43.        Ma, D.; Lee, C. M.; Chen, Y.; Mehta, N.; Kim, S. H.; Liu, Z. Vibrational Sum Frequency Generation Digital Holography. Appl. Phys. Lett. 2017, 110 (25), 251601. DOI: 10.1063/1.4986451

42.        Kang, L.; Ren, Q.; Werner, D. H. Leveraging Superchiral Light for Manipulation of Optical Chirality in the Near-Field of Plasmonic Metamaterials. ACS Photonics 2017, 4 (6), 1298–1305. DOI: 10.1021/acsphotonics.7b00057

41.        Ren, Q.; Nagar, J.; Kang, L.; Bian, Y.; Werner, P.; Werner, D. H. Efficient Wideband Numerical Simulations for Nanostructures Employing a Drude-Critical Points (DCP) Dispersive Model. Sci. Rep. 2017, 7 (1), 2126. DOI: 10.1038/s41598-017-02194-1

40.        Li, X.; Schaak, R. E. Reactive AgAuS and Ag3AuS2 Synthons Enable the Sequential Transformation of Spherical Nanocrystals Into Asymmetric Multicomponent Hybrid Nanoparticles. Chem. Mater. 2017, 29 (9), 4153–4160. DOI: 10.1021/acs.chemmater.7b01449

39.        Noh, J.; Huang, S.; Leykam, D.; Chong, Y. D.; Chen, K. P.; Rechtsman, M. C. Experimental Observation of Optical Weyl Points and Fermi Arc-Like Surface States. Nat Phys 2017, 13 (6), 611–617. DOI: 10.1038/nphys4072

38.        Hassan, A. U.; Zhen, B.; Soljačić, M.; Khajavikhan, M.; Christodoulides, D. N. Dynamically Encircling Exceptional Points: Exact Evolution and Polarization State Conversion. Phys. Rev. Lett. 2017, 118 (9), 093002. DOI: 10.1103/PhysRevLett.118.093002

37.        Pantoja, M. F.; Nagar, J.; Lu, B.; Werner, D. H. Existence of Superdirective Radiation Modes in Thin-Wire Nanoloops. ACS Photonics 2017, 4 (3), 509–516. DOI: 10.1021/acsphotonics.6b00486

36.        Boehm, S. J.; Kang, L.; Werner, D. H.; Keating, C. D. Field-Switchable Broadband Polarizer Based on Reconfigurable Nanowire Assemblies. Adv. Funct. Mater. 2017, 27 (5), 1604703. DOI: 10.1002/adfm.201604703

35.        Lu, B. Q.; Nagar, J.; Yue, T.; Pantoja, M. F.; Werner, D. H. Closed-Form Expressions for the Radiation Properties of Nanoloops in the Terahertz, Infrared and Optical Regimes. IEEE Trans. Antennas Propagat. 2016, 65 (1), 121–133. DOI: 10.1109/TAP.2016.2624150

34.        Weimann, S.; Kremer, M.; Plotnik, Y.; Lumer, Y.; Nolte, S.; Makris, K. G.; Segev, M.; Rechtsman, M. C.; Szameit, A. Topologically Protected Bound States in Photonic Parity–Time-Symmetric Crystals. Nature Materials 2016, 16 (4), 433–438. DOI: 10.1038/nmat4811

33.        Namin, F.; Werner, D. H. An Exact Method to Determine the Photonic Resonances of Quasicrystals Based on Discrete Fourier Harmonics of Higher-Dimensional Atomic Surfaces. Crystals 2016, 6 (12), 93–18. DOI: 10.3390/cryst6080093

32.        Liu, L.; Kang, L.; Mayer, T. S.; Werner, D. H. Hybrid Metamaterials for Electrically Triggered Multifunctional Control. Nat Comms 2016, 5, 13236. DOI: 10.1038/ncomms13236

31.        Nye, N. S.; Halawany, El, A.; Bakry, A.; Razvi, M. A. N.; Alshahrie, A.; Khajavikhan, M.; Christodoulides, D. N. Passive PT-Symmetric Metasurfaces with Directional Field Scattering Characteristics. IEEE J. Select. Topics Quantum Electron. 2016, 22 (5), 107–114. DOI: 10.1109/JSTQE.2016.2537798

30.        Deng, D. D.; Lin, Z.; Elías, A. L.; Perea-Lopez, N.; Li, J.; Zhou, C.; Zhang, K.; Feng, S.; Terrones, H.; Mayer, J. S.; Robinson, J.; Terrones, M.; Mayer, T. S. Electric-Field-Assisted Directed Assembly of Transition Metal Dichalcogenide Monolayer Sheets. ACS Nano 2016, 10 (5), 5006–5014. DOI: 10.1021/acsnano.5b03114

29.        Namin, F. A.; Yuwen, Y. A.; Liu, L.; Panaretos, A. H.; Werner, D. H.; Mayer, T. S. Corrigendum: Efficient Design, Accurate Fabrication and Effective Characterization of Plasmonic Quasicrystalline Arrays of Nano-Spherical Particles. Sci. Rep. 2016, 6 (1), 24655. DOI: 10.1038/srep24655

28.        Lin, L.; Jiang, Z. H.; Ma, D.; Yun, S.; Liu, Z.; Werner, D. H.; Mayer, T. S. Dielectric Nanoresonator Based Lossless Optical Perfect Magnetic Mirror with Near-Zero Reflection Phase. Appl. Phys. Lett. 2016, 108 (17), 171902. DOI: 10.1063/1.4947274

27.        Jiang, Z. H.; Turpin, J. P.; Morgan, K.; Lu, B.; Werner, D. H. Correction to “Spatial Transformation-Enabled Electromagnetic Devices: From Radio Frequencies to Optical Wavelengths.” Philos. Trans. R. Soc., A 2016, 374 (2068), 20160095. DOI: 10.1098/rsta.2016.0095

26.        Bossard, J. A.; Lin, L.; Werner, D. H. Correction to “Evolving Random Fractal Cantor Superlattices for the Infrared Using a Genetic Algorithm.” J. R. Soc. Interface 2016, 13 (116), 20160186. DOI: 10.1098/rsif.2016.0186

25.        Panaretos, A. H.; Yuwen, Y. A.; Werner, D. H.; Mayer, T. S. Corrigendum: Tuning the Optical Response of a Dimer Nanoantenna Using Plasmonic Nanoring Loads. Sci. Rep. 2016, 6 (1), 21942. DOI: 10.1038/srep21942

24.        Namin, F. A.; Yuwen, Y. A.; Liu, L.; Panaretos, A. H.; Werner, D. H.; Mayer, T. S. Efficient Design, Accurate Fabrication and Effective Characterization of Plasmonic Quasicrystalline Arrays of Nano-Spherical Particles. Sci. Rep. 2016, 6 (1), 22009. DOI: 10.1038/srep22009

23.        Bossard, J. A.; Lin, L.; Werner, D. H. Evolving Random Fractal Cantor Superlattices for the Infrared Using a Genetic Algorithm. J. R. Soc. Interface 2016, 13 (114), 20150975. DOI: 10.1098/rsif.2015.0975

22.        Panaretos, A. H.; Werner, D. H. Dual-Mode Plasmonic Nanorod Type Antenna Based on the Concept of a Trapped Dipole: Erratum. Opt. Express 2016, 24 (5), 4979. DOI: 10.1364/OE.24.004979

21.        Jiang, Z. H.; Werner, D. H. Dispersion Engineering of Metasurfaces for Dual-Frequency Quasi-Three-Dimensional Cloaking of Microwave Radiators. Opt. Express 2016, 24 (9), 9629–9644. DOI: 10.1364/OE.24.009629

20.        Panaretos, A. H.; Werner, D. H. Multi-Port Admittance Model for Quantifying the Scattering Response of Loaded Plasmonic Nanorod Antennas: Erratum. Opt. Express 2016, 24 (4), 3720. DOI: 10.1364/OE.24.003720

19.        Zhang, H.-T.; Zhang, L.; Mukherjee, D.; Zheng, Y.-X.; Haislmaier, R. C.; Alem, N.; Engel-Herbert, R. Wafer-Scale Growth of VO2 Thin Films Using a Combinatorial Approach. Nat Comms 2015, 6 (1), 8475. DOI: 10.1038/ncomms9475

18.        Jiang, Z. H.; Turpin, J. P.; Morgan, K.; Lu, B.; Werner, D. H. Spatial Transformation-Enabled Electromagnetic Devices: From Radio Frequencies to Optical Wavelengths. Philos. Trans. R. Soc., A 2015, 373 (2049), 20140363. DOI: 10.1098/rsta.2014.0363

17.        Jiang, Z. H.; Sieber, P. E.; Kang, L.; Werner, D. H. Restoring Intrinsic Properties of Electromagnetic Radiators Using Ultralightweight Integrated Metasurface Cloaks. Adv. Funct. Mater. 2015, 25 (29), 4708–4716. DOI: 10.1002/adfm.201501261

16.        Boehm, S. J.; Lin, L.; Guzmán Betancourt, K.; Emery, R.; Mayer, J. S.; Mayer, T. S.; Keating, C. D. Formation and Frequency Response of Two-Dimensional Nanowire Lattices in an Applied Electric Field. Langmuir 2015, 31 (21), 5779–5786. DOI: 10.1021/acs.langmuir.5b01633

15.        Panaretos, A. H.; Yuwen, Y. A.; Werner, D. H.; Mayer, T. S. Tuning the Optical Response of a Dimer Nanoantenna Using Plasmonic Nanoring Loads. Sci. Rep. 2015, 5 (1), 9813. DOI: 10.1038/srep09813

14.        Madan, H.; Jerry, M.; Pogrebnyakov, A.; Mayer, T.; Datta, S. Quantitative Mapping of Phase Coexistence in Mott-Peierls Insulator During Electronic and Thermally Driven Phase Transition. ACS Nano 2015, 9 (2), 2009–2017. DOI: 10.1021/nn507048d

13.        Panaretos, A. H.; Werner, D. H. Dual-Mode Plasmonic Nanorod Type Antenna Based on the Concept of a Trapped Dipole. Opt. Express 2015, 23 (7), 8298–8309. DOI: 10.1364/OE.23.008298

12.        Panaretos, A. H.; Werner, D. H. Multi-Port Admittance Model for Quantifying the Scattering Response of Loaded Plasmonic Nanorod Antennas. Opt. Express 2015, 23 (4), 4459–4471. DOI: 10.1364/OE.23.004459

11.        Jiang, Z. H.; Lin, L.; Ma, D.; Yun, S.; Werner, D. H.; Liu, Z.; Mayer, T. S. Broadband and Wide Field-of-View Plasmonic Metasurface-Enabled Waveplates. Sci. Rep. 2014, 4 (1), 1232009. DOI: 10.1038/srep07511

10.        Jiang, Z. H.; Werner, D. H. Quasi-Three-Dimensional Angle-Tolerant Electromagnetic Illusion Using Ultrathin Metasurface Coatings. Adv. Funct. Mater. 2014, 24 (48), 7728–7736. DOI: 10.1002/adfm.201401561

9.          Gordon, T. R.; Schaak, R. E. Synthesis of Hybrid Au-In2O3 Nanoparticles Exhibiting Dual Plasmonic Resonance. Chem. Mater. 2014, 26 (20), 5900–5904. DOI: 10.1021/cm502396d

8.          Healy, N.; Mailis, S.; Bulgakova, N. M.; Sazio, P. J. A.; Day, T. D.; Sparks, J. R.; Cheng, H. Y.; Badding, J. V.; Peacock, A. C. Extreme Electronic Bandgap Modification in Laser-Crystallized Silicon Optical Fibres. Nature Materials 2014, 13 (12), 1122–1127. DOI: 10.1038/nmat4098

7.          Smith, B. D.; Kirby, D. J.; Boehm, S. J.; Keating, C. D. Self-Assembled Binary Mixtures of Partially Etched Nanowires. Part. Part. Syst. Charact. 2014, 32 (3), 347–354. DOI: 10.1002/ppsc.201400139

6.          Wang, X.; Werner, D. H.; Turpin, J. P. Application of AIM and MBPE Techniques to Accelerate Modeling of 3-D Doubly Periodic Structures with Nonorthogonal Lattices Composed of Bianisotropic Media. IEEE Trans. Antennas Propagat. 2014, 62 (8), 4067–4080. DOI: 10.1109/TAP.2014.2322903

5.          Wang, X.; Werner, D. H.; Turpin, J. P. A Fast Analysis of Scattering From Large-Scale Finite Periodic Microstrip Patch Arrays Arranged on a Non-Orthogonal Lattice Using Sub-Entire Domain Basis Functions. IEEE Trans. Antennas Propagat. 2014, 62 (5), 2543–2552. DOI: 10.1109/TAP.2014.2309116

4.          Jiang, Z. H.; Wu, Q.; Brocker, D. E.; Sieber, P. E.; Werner, D. H. A Low-Profile High-Gain Substrate-Integrated Waveguide Slot Antenna Enabled by an Ultrathin Anisotropic Zero-Index Metamaterial Coating. IEEE Trans. Antennas Propagat. 2014, 62 (3), 1173–1184. DOI: 10.1109/TAP.2013.2294354

3.          Ji, X.; Zhang, B.; Krishnamurthi, M.; Badding, J.; Gopalan, V. Mid-Infrared Spectroscopic Imaging Enabled by an Array of Ge-Filled Waveguides in a Microstructured Optical Fiber Probe. Opt. Express 2014, 22 (23), 28459–28466. DOI: 10.1364/OE.22.028459

2.          Panaretos, A. H.; Werner, D. H. Transmission Line Approach to Quantifying the Resonance and Transparency Properties of Electrically Small Layered Plasmonic Nanoparticles. J. Opt. Soc. Am. B 2014, 31 (7), 1573–1580. DOI: 10.1364/JOSAB.31.001573

1.         Shen, L.; Healy, N.; Xu, L.; Cheng, H. Y.; Day, T. D.; Price, J. H. V.; Badding, J. V.; Peacock, A. C. Four-Wave Mixing and Octave-Spanning Supercontinuum Generation in a Small Core Hydrogenated Amorphous Silicon Fiber Pumped in the Mid-Infrared. Opt. Lett. 2014, 39 (19), 5721–5724. DOI: 10.1364/OL.39.005721