Interface-induced superconductivity in magnetic topological insulators

Nitin Samarth, Xiaodong Xu (UW), Weida Wu (Rutgers), Chao-Xing Liu, and Cui-Zu Chang

An IRG1 team employed molecular beam epitaxy to synthesize heterostructures stacking a ferromagnetic topological insulator with a quantum anomalous Hall state, Cr-doped (Bi, Sb)₂Te₃, and an antiferromagnetic iron chalcogenide, FeTe, with an atomically sharp interface. An unexpected phenomenon emerges: interface-induced superconductivity.

Electrical transport, reflective magnetic circular dichroism, magnetic force microscopy, and angle-resolved photoemission spectroscopy demonstrate the coexistence of superconductivity, ferromagnetism, and topological band structure.

These QAH/FeTe heterostructures with robust interface-induced superconductivity provide an ideal platform for the exploration of chiral topological superconductivity and Majorana physics and thus constitute an important step toward scalable topological quantum computation.

Yi et al., Science 383, 634 (2024)

Left: MBE-grown Cr-doped (Bi,Sb)₂Te₃/FeTe heterostructures

Middle, right: Coexistence of superconductivity, ferromagnetism, and topological order. STM measurements confirm a superconducting proximity effect.

